Preliminary Results Salt Separation

BL2F Mid-Term Workshop

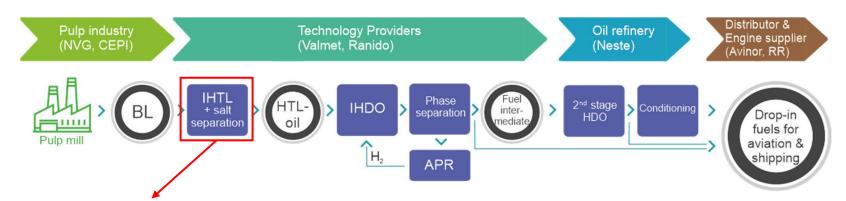
Darius Yeadon ::: Paul Scherrer Institute

PAUL SCHERRER INSTITUT

BL2F

Presentation Overview

- Introduction in salt separation
- Types of salt separation
- HP-DSC Results
 - Crucibles
 - Adjusting NaOH and NaHS
- Summary and future work



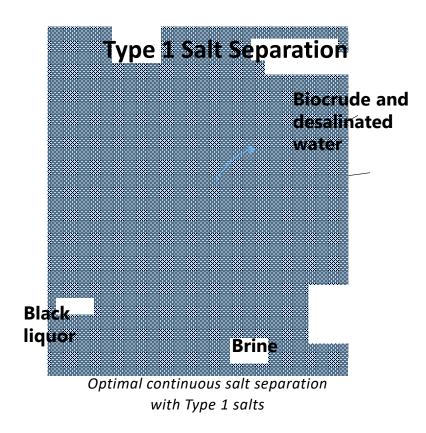
Black Liquor to Fuel (BL2F)

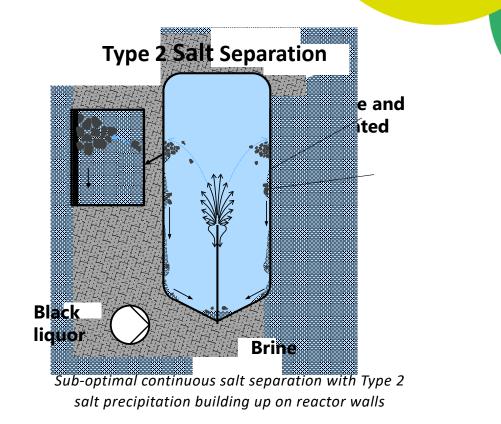
Task 2.1 – Optimisation of Salt Separation from Model Salt Solutions

- Collecting phase equilibria data of model salt solutions by HP-DSC
- Obtaining continuous salt separation efficiencies on Salsan II test rig

Task 2.2 – Optimisation of Salt Separation from BL

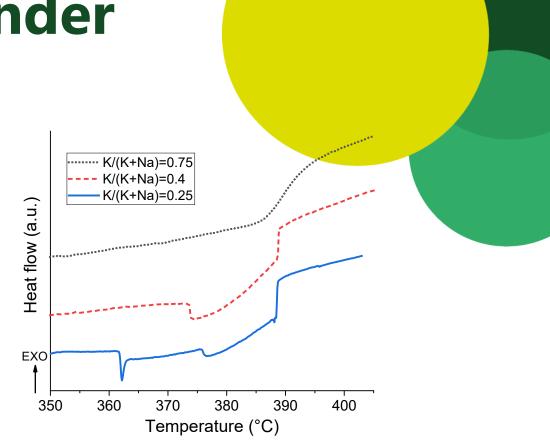
Aim – To induce Type 1 salt separation


- Adjusting NaOH and NaHS salt concentrations
- Addition of new salts, such as Na₂HPO₄
- Removal of Type 2 salts


Typical BL salt content ranges from lit.	NaOH	NaHS	M ₂ SO ₄	M ₂ CO ₃	Total
	wt.%	wt.%	wt.%	wt.%	wt.%
	0.7 – 3	0.5 – 2.6	0.2 – 1.9	1.6 - 7.0	≈5

Types of Salt Separation under Supercritical Conditions

Figures taken from: Runyu Wang, Industrial & Engineering Chemistry Research 2021 60 (10), 4072-4085


The behaviour of Salts under Supercritical Conditions

Under supercritical conditions single salt-water mixtures can behave one of two ways:

- Phase separate into a brine rich phase and a desalinated phase – Type 1 behaviour
- Undergo precipitation, forming solid salt and desalinated phase – Type 2 behaviour

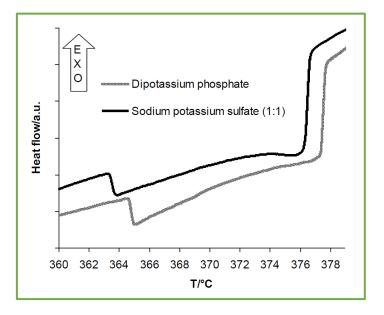
Mixtures of salts is more complex, with no accurate model to predict the phase behaviour

- Mixtures of solely Type 1 can exhibit Type 2 behaviour and vice versa
- Factors to take into account is the composition of individual salts, as well as the temperature and pressure
- It is currently impossible to accurately predict salt the behaviour of mixtures

Increasing the concentration of larger cations, such as potassium has shown to promote Type 1 salt separation.

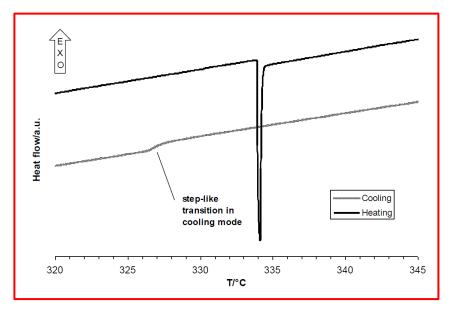
• Not ideal for the Kraft process due to difficulty in recovery

Figure taken from: Runyu Wang, Industrial & Engineering Chemistry Research 2021 60 (10), 4072-4085



PAUL SCHERRER INSTITUT

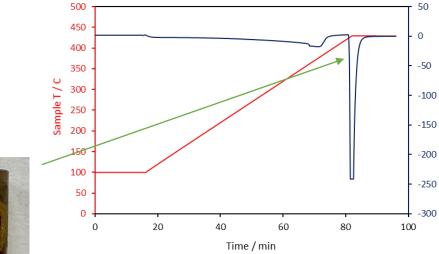
HP-DSC Type 1 and Type 2 Salt Behaviour


Type 1

- Phase separation into brine rich and desalinated phases
- Endothermic step heating
- Type 1 + Type 1 ≠ Type 1

Type 2

- Precipitation of salts, due to a rapid drop in dielectric constant
- Sharp endothermic peak heating
- Type 2 + Type 2 ≠ Type 2


Figures taken from: Reimer, J., Biomass Related Salt Solutions at Hydrothermal Conditions. 2015, ETH Zurich.

PAUL SCHERRER INSTITUT

HP-DSC Crucibles

Inconel Crucibles

- Inconel crucibles regularly leaked with mode salt solutions
- Leakage observed by large exothermic peak
- Leakages typically occurred above at supercritical conditions
- Corrosion was visible on the crucibles
- Unable to create a dataset

HP-DSC conditions

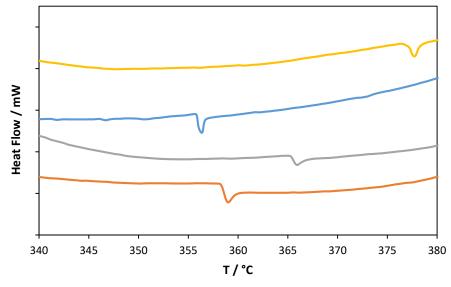
Heat .

- Temperature ramp 0.1 °C/min
- Crucibles filled to a density of 0.3 kg/m³

Titanium Crucibles

- Titanium crucibles were found to be the best alternative option
- Crucibles pre-treated in 5M NaOH for 24h, washed and annealed at 600 °C 1 h in a furnace
- No signs of leakage or external corrosion

In-house made Titanium crucibles Grade 5


HP-DSC Data of Model Salt Solutions w/o Organics

- 3.5 wt.% NaOH, 1.2 wt.% NaHS

- 1.2 wt.% NaHS

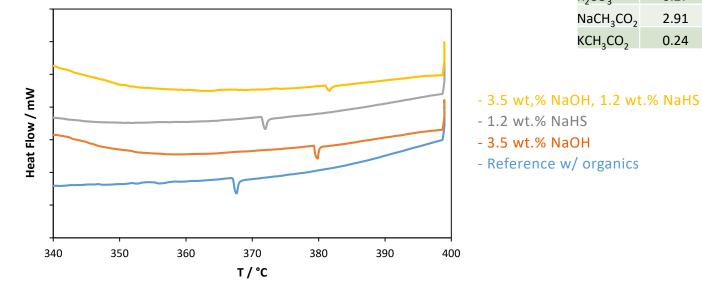
- 3.5 wt.% NaOH

- Reference

- Increasing the NaOH results in increasing the crystallisation temperatures, Type 2
- Excess NaHS causes a slight drop in the crystallisation temperature
- Increasing both NaOH and NaHS sees significant increase in Type 2 transition temperature
- Alternative strategy required to induce Type 1 salt separation

Model Salt Solution from Characterisation – Reference Point

	wt.% in		
Salt	pristine BL	g/kg	mmol/kg
NaOH	1.74	17.4	435.0
NaHS	0.51	5.1	91.0
Na ₂ SO ₄	0.40	4.0	28.4
Na ₂ CO ₃	1.45	14.5	137.2
K ₂ CO ₃	0.27	2.7	19.6
Total	4.4	43.8	711.1


HP-DSC Data of Model SS with Organics

Model Salt Solution Containing Organics

- Organics added in the form of metal acetate, chosen to avoid complex phase transitions
- Quantity of acetate calculated from remaining Na and K from characterisation of BL, and subtracting remaining sulphur content

Model Salt Solution including organics from Characterisation – Reference Point

Salt	wt.% in pristine BL	g/kg	mmol/kg
NaOH	1.74	17.4	435.0
NaHS	0.51	5.1	91.0
Na ₂ SO ₄	0.40	4.0	28.4
Na ₂ CO ₃	1.45	14.5	137.2
K ₂ CO ₃	0.27	2.7	19.6
NaCH ₃ CO ₂	2.91	29.1	354.7
KCH ₃ CO ₂	0.24	2.4	24.5

- The addition of acetate to the model solutions results in all transitions shifting to higher temperatures
- Type 1 behaviour is still observed with the extraction of CO₃²⁻ in the presence of organics

Summary and Future Work

Phase Equilibria Data

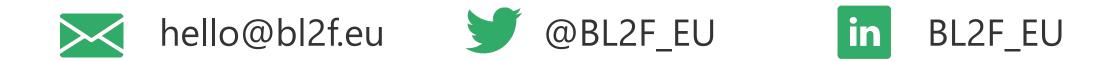
- Titanium crucibles are best suited for testing BL model salt solutions
- Increasing the NaOH and NaHS salt content has minimal impact on inducing Type 1 behaviour
- Alternative strategies are needed to be explored to induce Type 1 salt behaviour

Future Work

- Testing salt extraction efficiency under continuous conditions on Salsan II test rig
- Experimental work hopefully to commence in February with last few technical problems being solved
- Initial experiments:
 - Reference model salt solution w/o organics
 - High NaOH and NaHS mixtures
- Repeat experiments with organics
- Upgrading of Salsan II to handle BL
 - Initial experiments with dilute BL and progressively increasing the concentration

BL2F Partners:

Valmet 🔶



Thank you!

Get in touch with the project:

Coordinator: Prof. Dr. Tero Joronen, Tampere University

Website: <u>www.bl2f.eu</u>

