#### Hydrodeoxygenation (HDO) of bio-oils

Research professor Juha Lehtonen

Sari Rautiainen, Tyko Viertiö







#### Outline

# Basics of HDO HDO of bio-oils from biomass liquefaction Slurry hydrotreatment Hydrothermal HDO Summary



### Basics of hydrodeoxygenation (HDO)



# Upgrading by hydrodeoxygenation (HDO)





### Deoxygenation of bio oils

#### Oxygen is removed in the form of

- H<sub>2</sub>O
  - Hydrodeoxygenation, hydrogenolysis
  - Various amounts of hydrogen is needed
  - Example reaction for saturated fatty acid:  $RCOOH + 3H_2 \rightarrow R'H + 2H_2O$
- CO, CO<sub>2</sub>
  - Decarbonylation, decarboxylation
  - Some carbon is typically lost, less hydrogen needed
  - Example reactions for saturated fatty acid  $RCOOH + H_2 \rightarrow RH + CO + H_2O$  $RCOOH \rightarrow RH + CO_2$



### Catalysts for HDO

- Sulfided catalyst (NiMo or CoMo on  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>)
  - Adopted from hydrotreatment (HDS, HDN) of petroleum fractions
  - Active in sulfided form => sulfur addition often needed if no sulfur in the feed
  - HDO mainly through hydrogenolysis, decarboxylation & decarbonylation can also play a role
- Noble metal catalysts
  - Rh, Ru, Pd, Pt
  - Carbon, Al2O3, ZrO2 as support
  - No sulfur needed
  - Hydrogenolysis activity lower, decarbonylation, decarboxylation in important role
  - Deactivation often significant, especially if no hydrogen is used (DO)
- Supported metal carbides (Mo<sub>2</sub>C and W<sub>2</sub>C), phosphides (Ni<sub>2</sub>P, Co<sub>2</sub>P, MoP), nitrides (Mo<sub>2</sub>N) and oxides (MoO<sub>3</sub>, NiO-MoO<sub>3</sub>, CoO-MoO<sub>3</sub>)



#### HDO of bio-oils: conditions

| Temperature, °C                                                   | 250-400                                                                    |
|-------------------------------------------------------------------|----------------------------------------------------------------------------|
| Pressure, MPa                                                     | 10-18                                                                      |
| Liquid hourly space velocity,<br>(vol. bio-oil)/(vol. catalyst)/h | 0.1-0.8                                                                    |
| $H_2$ feed rate,<br>(L $H_2$ )/(L bio-oil)                        | 100-700                                                                    |
| Catalyst active metals                                            | CoO/MoO <sub>3</sub> , NiO/MoO <sub>3</sub> , NiO/WO <sub>2</sub> , Ni, Pt |
| Catalyst support                                                  | $Al_2O_3$ , $\gamma$ - $Al_2O_3$ , silica-alumina, Y-zeolite/ $Al_2O_3$    |





# HDO of bio-oils by biomass liquefaction



### Biofuels from lignocellulosic biomass by liquefaction





#### Bio-oils liquefaction by fast pyrolysis and upgrading by HDO

Severe hydrotreatment





### Instability of bio-oils



Figure from Wang et al. 2016

- Bio-oils tends to thermally repolymerize and form plugs in process units
- First signs of thermal condensation at <100 °C, severe at high temperature
- High carbohydrate and carbonyl content



### Stepwise processing

- The plug formation can be hindered by hydroprocessing the bio-oil in multiple steps in fixed bed hydrotreater reactors
- Problems: expensive catalysts, deactivation during 1st stabilising hydrogenation step due to sulphur and coke formation





Zacher, A. H. *et al.* (2019) 'Technology advancements in hydroprocessing of bio-oils', *Biomass and* This project has received funding from the European Union Grant Number 884111 *Bioenergy*. Pergamon, 125, pp. 151–168. doi: 10.1016/J.BIOMBIOE.2019.04.015.

#### Catalytic slurry hydrotreatment



## Alternative: slurry hydrotreatment applied for the stabilisation

- Bio-oil stabilization by slurry hydrotreatment applying sulfided Mo-based catalysts
  - Continuous addition of fresh and removal of spent catalyst enabled
- Rest oxygen removal by fixed bed hydrotreatment by supported sulfided catalysts
  - Severity defined by product specification





#### CaSH - Catalytic slurry hydrotreatment





# Preparation of unsupported Mo and promoted Mo catalysts







HDO activity correlation with:

- Emulsion properties
- Precursor properties
- Emulsion sulfidation

One-pot hydrothermal precipitation







Design Region - Untitled Full Fac (2 levels)

Catalyst properties and HDO activity correlation with:

- Synthesis pH
- Synthesis temperature
- Sulfur amount in synthesis



#### Tests with real bio-oils

#### **BATCH TEST RUNS**



- Batch reactor operation validated with model compounds
- Transition to real bio-oil starting in early 2022

#### ACTIVITIES

- Identifying and procuring suitable biooils
- Discharged catalyst characterization
- Production of larger catalyst batch for slurry pilot test run

#### SLURRY PILOT PLANT



- For the performed with the best catalyst from WP1 and WP2 catalyst development.
- Objective few test runs, in the range of total 50 hours of operation.







# Catalyst synthesis scale-up for bio-oil pilot tests





# Successful proof of concept in total 70 hours of continuous operation

| Carch I<br>Ardyse of | Cash<br>Pytolysen gif |  |
|----------------------|-----------------------|--|
|                      |                       |  |

| Catalyst  | Temperature | Pressure<br>bar | Hydrogen<br>consumption<br>g/kg bio-oil | Degree of<br>deoxygenation | Oil<br>product<br>yield (dry) |
|-----------|-------------|-----------------|-----------------------------------------|----------------------------|-------------------------------|
| VTT       | 350 °C      | 140             | 30.1                                    | 37%                        | 47%                           |
| Reference | 350 °C      | 140             | 31.6                                    |                            |                               |
| VTT       | 380 °C      | 75              | 36.8                                    | 46%                        | 46%                           |
| VTT       | 380 °C      | 140             | 35.7                                    | 48%                        | 43%                           |
| Reference | 380 °C      | 140             | 41.8                                    | 50%                        | 45%                           |
| VTT       | 410 °C      | 140             | 45.5                                    | 48%                        | 37%                           |
| Reference | 410 °C      | 140             | 43.3                                    | 51%                        | 41%                           |





### Hydrothermal HDO



### BL2F upgrading concept



IHDO = HDO in hydrothermal conditions



### Hydrothermal HDO

HDO in hydrothermal conditions in BL2F

- Utilization of biocrude from HTL in aqueous environment
- Performing hydrothermal catalytic HDO in near critical or supercritical conditions

Benefits:

- No need to separate water before IHDO
- Water can act as solvent of hydrocarbons in such conditions
- Hydrogen can be generated in situ by catalytic transfer hydrogenation and APR in such conditions
- Reaction conditions can protect catalyst from deactivation
  by coke

Challenges:

- Residues of salts from IHTL to IHDO affect the catalyst deactivation
- Catalyst materials should tolerate aqueous near/supercritical conditions

#### Integrated HydroDeOxygenation (IHDO)



*Green Chem.*, 23, 2021, 1114; *Catalysis Communications*, 90, 2017, 47-50; *Chemical Engineering Journal*, 407, 2021, 126332.



# Hydrothermal HDO – model component testing

#### BLF-03 performs slightly better especially in the "milder" conditions



Degree of Deoxygenation (BLF-03)





### Summary



#### Summary

- Upgrading of bio-oils to transportation fuels challenging due to instability of bio-oils and impurities in bio-oils (sulfur etc.)
- New solutions needed to commercialize bio-oils upgrading by HDO
  - Slurry hydroprocessing (CaSH project)
  - Hydrothermal HDO (BL2F project)
- Catalysts have been developed and tested for these two upgrading technologies
  - So far mainly tests with model components in BL2F
  - Piloting in slurry hydroprocessing at RISE
- So far slurry hydroprocessing looks the most promising concept
  - Hydothermal conditions challenging for solid catalysts => metal leaching etc.

