On coupling salt extraction from black liquor with hydrothermal liquefaction of its organic content

BL2F Final event - Online

07-03-2024 Nicholas Canabarro¹, Frédéric Vogel^{1,2}, <u>David Baudouin¹</u>

¹ Paul Scherrer Institute ² University of Applied Sciences Northwestern Switzerland

PAUL SCHERRER INSTITUT

This project has received funding from the European Union Grant Number 884111

This

This project has received funding from the European Union Grant Number 884111

Hydrothermal valorization of wet biomass

• Broad variety of chemical energy carriers possible

Hydrothermal valorization of wet biomass

• Solubility of salts drops drastically

This project has received funding from the

Ding et al., Fluid Phase Equilib. 483 (2019) 31 ; Lemoine et al., J. Supercrit. Fluids 130 (2017) 91

Hydrothermal valorization of wet biomass

• One can exploit low salt solubility for gasification and high temperature liquefaction

This project has received funding from the

Ding et al., Fluid Phase Equilib. 483 (2019) 31 ; Lemoine et al., J. Supercrit. Fluids 130 (2017) 91

Objectives of WP2

- Identify a strategy to allow steady salt extraction
- Optimize salt extraction
- Optimize the coupling of salt extraction and HTL

Ding et al., Fluid Phase Equilib. 483 (2019) 31 ; Lemoine et al., J. Supercrit. Fluids 130 (2017) 91

Salt phase behavior under Supercritical water: challenges

- Risk of clogging for type 2 salts
- Phase behavior of salt mixture cannot be predicted

Salt phase behavior under Supercritical water: challenges

• Salts in model black liquor are type 2

Model Salt Solution from Characterisation – Reference Point

Salt	Туре	wt.% in pristine BL	g/kg	mmol/kg
NaOH	1	1.74	17.4	435.0
NaHS	1	0.51	5.1	91.0
Na ₂ SO ₄	2	0.40	4.0	28.4
Na ₂ CO ₃	2	1.45	14.5	137.2
K ₂ CO ₃	1	0.27	2.7	19.6
Total	2	4.4	43.8	711.1

HP-DSC: salt phase behavior study

 With Black Liquor model salt solution, precipitation and fouling observed at 420°C & 250bars on continuous setup

In-house made Titanium Grade 5 crucibles

Canabarro N. I. et al, J. Supercrit. Fluids, accepted

HP-DSC: salt phase behavior study

 Increase HS- and/or HO- ratio (type I) has limited impact on phase behavior

Strategy 1:

increase type 1 salt concentration (NaOH & NaSH)

Canabarro N. I. et al, J. Supercrit. Fluids, accepted

HP-DSC: salt phase behavior study

• Global type 1 behavior observed when feed is causticized

Strategy 2:

Causticization, e.g. with Ca(OH)₂:

$$Ca(OH)_{2(s)} + M_2CO_{3(aq)} \leftrightarrows 2 MOH_{(aq)} + CaCO_{3(s)}$$

$$Type 2 Type 1$$

⇒ Causticization is a promising strategy

Canabarro N. I. et al, J. Supercrit. Fluids, accepted

This project has received funding from the European Union Grant Number 884111

PAUL SCHERRER INSTITUT

Temperature impact on salt separation

• Acceptable salt separation only above 410°C

Continuous extraction: model salts

- Plug formed with BL representative model
- No plugs observed with strategy 1&2
- Good recovery efficiency reached with 75% causticization

Canabarro N. I. et al, J. Supercrit. Fluids, accepted

Coupling salt separation & HTL

Feed composition

75%	25%
model salt solution (75% causticization)	hardwood weak BL

- No plug observed
- Large change of pH

Coupling salt separation & HTL

Feed composition

75%	25%
model salt solution (75% causticization)	hardwood weak BL

- No plug observed
- Large change of pH

PAUL SCHERRER INSTITUT

Phase behavior of phenolates?

рКа

10.0

10.0

9.4

9.2 & 12.8

Phase behavior of phenolates?

Feed: acetate-rich model salts, 75% causticized, 0.5wt% phenol

- Phenolates dominate over phenols (similar to carboxylates)
- Global type 1 phase behavior
- Behavior of polyphenols & phenolic likely similar

PAUL SCHERRER INSTITU

Conclusions

Optimisation of salt separation

- HP-DSC analytical method for the study of high pH solutions
- Two strategies identified to prevent plugging
- Cauterization gives good & steady extraction performance

Coupling HTL & salt separation with black liquor

- Good & steady inorganic salt separation reached
- Temperature range for optimal salt extraction identified
- Phenolic compounds are separated from the mainstream, along with inorganic salts
- Most carbon is extracted in the brine, with only 27% being biocrude

Thank you!

Get in touch with the project:

Coordinator: Prof. Dr. Tero Joronen, Tampere University

Website: <u>www.bl2f.eu</u>

BL2F Partners:

VTT

Valmet > П

This project has received funding from the European Union Grant Number 884111

Continuous extraction: model salts

This project has received funding from the European Union Grant Number 884111

WP2 in the BL2F project

Black Liquor to Fuel (BL2F) is a H2020 project that will transform **Black Liquor** (from Kraft process) into a new, clean biofuel for aviation and shipping.

