

Plant design and materials

Gonzalo del Alamo¹, Judit Sandquist¹, Daniel Blucher² ¹SINTEF Energy Research, ² SINTEF Industry

BL2F Final event, 6th March 2024

This project has received funding from the European Union Grant Number 884111

Outline

Black liquor to HTL biocrude

- Process design (integration into Kraft pulp mill)
- Yields and cost
- Materials corrosion tests (HTL equipment)
- Upgrading of HTL biocrude (refinery)
 - Process design
 - Yields and cost

Black liquor to biocrude

Integration with Kraft pulp mill

Black liquor to biocrude

HTL plant design (integrated into Kraft pulp mill)

Black liquor to biocrude

Biocrude yield and cost

Pulp mill capacity: **500 kt pulp /year** Black liquor to HTL: **5-30%**

Case	HTL biocrude	HDO biocrude
Mass yield (% wt. dry basis)	21.5	19.0
Energy yield (%)	50.0	45.3

HTL plant capacity [dry-ton/day]

Black liquor+bark to biocrude

Integration with Kraft pulp mill

Black liquor+bark to biocrude

HTL plant design (simplest)

This project has received funding from the European Union Grant Number 884111

Black liquor+bark to biocrude

Biocrude yield and cost

Mass fraction of bark in the HTL feed

HTL equipment materials

Corrosion test

4-week tests with simulated black liquor at super-critical conditions

- 🗶 Ti grade 2
- **X** SS 316
- **\$\$ SAF2507**
- 🗙 SS 254 SMO
- **\$** SAF 2507
- X NiCrMo alloy Inconel 625
- X NiCrMo alloy Hastelloy C276
- X NiCrAl alloy 602CA/699 XA

✓ CS CrMo P91

HTL biocrude upgrading (at refinery)

Fuel	Naphtha	Kerosene	Distillate
Mass yield (% wt. db)	47.2	13.4	24.0
Energy yield (%)	52.5	15.0	27.3

Minimum Fuel selling price

Conclusions

- Optimal integration with pulp mill
 20% Plack liquer to UTL + 20% bark in the UTL
 - 30% Black liquor to HTL + 20% bark in the HTL feed
- S3% biocrude energy yields, < 1 €/liter</p>
- I5% kerosene energy yield, <2.5 €/liter</p>
- 27% distillate energy yield, < 1.3 €/liter</p>

BL2F Partners:

Thank you!

Get in touch with the project:

Coordinator: Prof. Dr. Tero Joronen, Tampere University

Website: <u>www.bl2f.eu</u>

